

__

info@madeiradata.com I www.madeiradata.com

Company 123 – SQL Server Review Detailed Report

• Written By: Eitan Blumin, Madeira Data Solutions

• Reviewed By: Evyatar Karni & Guy Glantser, Madeira Data Solutions

• Created: 10/12/2020

• Last Updated: 09/02/2021

__

info@madeiradata.com I www.madeiradata.com

1. About This Document

This document describes the Business Environment and Technological Environment of Company 123. It then

details our findings and recommendations based on our SQL Server review.

If you are interested only in the bottom line, then you can read the Executive Summary. If you are interested in

the details, then jump to the Findings section.

You can use the Navigation Pane in Microsoft Word to easily navigate the document. Go to the "View" menu,

and in the "Show" section, you will find the "Navigation Pane" checkbox.

__

info@madeiradata.com I www.madeiradata.com

2. Executive Summary

The following sections describe the bottom-line in each one of the following business categories: performance,

availability, security, and cost savings. A red color means the current situation is poor with high risk and should

be addressed ASAP. A yellow color means the current situation is not optimal, but there's nothing urgent. A green

color means the current situation is good.

Performance

The CRM analytical system has a very good baseline in terms of database design best practices. But there’s still

a lot of room for improvement.

Several “small” mistakes seem to have a large negative impact on performance and should be easily rectifiable.

Some “larger” issues would require significant redesign on the database structure (such as utilizing a separate

“staging” database) but can provide a significant boost to performance and availability.

Availability

Currently, the main database (CRM_DB) is not included in an Availability Group, and as such is at risk of losing

data in case of a disaster. There is an “alternative” solution in place implementing a pseudo-log-shipping

mechanism to a remote environment, but it cannot be frequently utilized compared to Always On Availability

Groups.

The main issue with adding CRM_DB to Always On is the rate of data modifications which causes an

unacceptable overload on the AG synchronization.

By optimizing the data modification processes to “reduce their DML footprint”, we can provide an acceptable

behavior that would allow the CRM_DB database to be added to the AG.

Most of these recommendations bleed into the “Performance” topic.

Security

There are several high-risk factors to the SQL Server security in the CRM server. However, since the server is

located in an isolated network, the impact of these risk factors is reduced.

Cost Savings

There are a few cost-savings opportunities found during the review.

The most notable of these is the fact that the secondary DR server is fully licensed, even though it doesn’t need

to be.

There is also a significant amount of data that could potentially be reduced or compressed, possibly leading to

cost savings on the data disk(s).

__

info@madeiradata.com I www.madeiradata.com

3. Business Environment

The CRM server is used for various analytical operations and generation of “campaigns”. These operations are

done manually by the CRM Analyst team via the built-in tools of SQL Server (SSMS, SSIS, etc.).

4. Technological Environment

Our focus is on the CRM database server and its integration with surrounding environments, so here is the

relevant architecture:

The main server in question, CRM02-PRD, is located in a data center in Herzliya. It has an Availability Group set

up with a replica server CRM01-PRD, located in New Jersey.

It communicates with other servers via linked servers:

• DWH01-PRD

• SQL02-PRD

• SQL02-DR-PRD

5. Review Scope

• We analyzed all aspects of the data environment, including performance, availability, security, and cost,

with a focus on performance especially.

• Most of the findings are based on data collected between 11/10/2020 and 07/12/2020.

__

info@madeiradata.com I www.madeiradata.com

6. Findings

Following is a thorough list of all of our findings. Each finding is categorized according to its business implications

(performance, availability, security, and/or cost savings). The list is sorted according to the impact in descending

order, and then according to the effort required to implement the recommendation in ascending order. So, if you

are looking for quick wins, they are at the top of the list.

The impact of each finding corresponds to how much it affects the system. For example, a high-impact finding

with an Availability business implication means that your system is at high risk of business continuity. You should

apply the recommendations for high-impact findings ASAP.

The recommendation effort represents the time and effort needed to apply the recommendation. It corresponds

to the complexity of the solution, as well as to the time it will take to implement the recommendation. For example,

a recommendation with a low effort, which is related to a finding with a Performance business implication, means

that we can solve the problem and improve performance relatively quickly.

We also present the risk associated with implementing each recommendation. A high-risk recommendation can

negatively affect availability or performance and should be carefully tested and monitored.

The following table includes a summary of all the findings. You can click on each finding to jump to the detailed

description.

Finding
Business

Implications
Impact

Recommendation
Effort

Recommendation
Risk

Secondary Server is Fully Licensed Cost Savings High Low Low

Insufficient Database Integrity Check Configuration Availability High Low Low

Eligibilities Sync Performance Tuning Performance High Medium Low

CardHolderDetails Sync Performance Tuning Performance High Medium Low

ContactHistory Performance Performance High Medium Low

Campaign Analysis Performance Tuning Performance High Medium Low

Reduce Load on AG via External Staging Tables Performance High Medium Low

Backups and DB Files on the Same Physical Disk Availability High Medium Low

xp_cmdshell Enabled Security High Medium Low

SQL Memory Dump Files Found Availability High Medium Medium

Secondary Server is not Monitored

Availability

Performance

Security

Medium Low Low

Unused Indexes
Performance

Cost Savings
Medium Low Low

Outdated Statistics Performance Medium Low Low

Remote DAC should be Enabled Availability Medium Low Low

__

info@madeiradata.com I www.madeiradata.com

Maintenance History Cleanup Jobs not Scheduled
Performance

Availability
Medium Low Low

Intermittent Availability Group Disconnections Availability Medium Medium Low

Foreign Keys without Matching Indexes Performance Medium Medium Low

Tables with High Unused Space
Performance

Cost Savings
Medium Medium Low

Tables with high Data Compression Savings
Performance

Cost Savings
Medium Medium Low

Large Heaps (Tables without Clustered Indexes) Performance Medium Medium Medium

DB Files Located on OS Drive Availability Medium Medium Medium

Redundant Indexes
Performance

Cost Savings
Low Low Low

Orphaned Database Users
Security

Availability
Low Low Low

Job Failover Solution for HA/DR Availability Low Low Low

Tables To Be Deleted
Performance

Cost Savings
Low Low Medium

Following is a detailed description of each finding and the corresponding recommendation.

a. Secondary Server is Fully Licensed

Business Implications Impact Recommendation Effort Recommendation Risk

Cost Savings High Low Low

• Description

On November 1st, 2019, Microsoft announced several High Availability and Disaster Recovery

benefits related to SQL Server licensing. One of them is the ability to install and run passive SQL

Server instances in a separate operating system environment for disaster recovery in anticipation of

a failover event.

The meaning of a passive SQL Server instance is that the instance is only synchronized with the

primary replica in anticipation of a failover event, but it is not used directly for any other purposes.

This benefit is only available to software assurance customers of SQL Server.

Currently, the secondary server is fully licensed and doesn't leverage this benefit.

• Recommendation

o Verify the existence of SQL Server software assurance.

__

info@madeiradata.com I www.madeiradata.com

o If available, contact Microsoft or your reseller to apply this feature and update payment

agreements.

b. Insufficient Database Integrity Check Configuration

Business Implications Impact Recommendation Effort Recommendation Risk

Availability High Low Low

• Description

Several databases were found to be lacking integrity checks for a long time. Performing regular

integrity checks is essential for detection and pre-treatment of corruption and data loss, to avoid

malfunction and possible loss of availability.

• Recommendation

o Install the latest version of the Ola Hallengren maintenance solution scripts as further detailed

in the section Outdated Statistics.

o Make sure that your existing SQL Server jobs “DatabaseIntegrityCheck -

SYSTEM_DATABASES” and “DatabaseIntegrityCheck - USER_DATABASES” are

covering all the databases in the server.

o For large databases, consider using the PHYSICAL_ONLY option to minimize check duration.

o For very large databases, you should consider “splitting” the integrity checks by gradually

checking a different “bucket” of tables each weekday. Such an implementation is available in

the Tiger Toolbox open-source repository from Microsoft.

c. Eligibilities Sync Performance Tuning

Business Implications Impact Recommendation Effort Recommendation Risk

Performance High Medium Low

• Description

Company 123’s main concern when requesting this SQL Server Review was to improve their main

BI/DWH synchronization and calculation processes. The stored procedure BI_Eligibilities is one of

them, responsible for synchronizing the Eligibilities table.

In terms of Duration:

o The longest-running parts in this procedure seem to be the ones querying the large datasets

from the SQL-REPLICA linked server.

In terms of Writes:

o The part incurring the most disk IO writes is the last MERGE statement at the very end of the

procedure.

https://ola.hallengren.com/
https://github.com/microsoft/tigertoolbox/blob/master/MaintenanceSolution/5_job_Maintenance_MEA.sql
https://github.com/microsoft/tigertoolbox/blob/master/MaintenanceSolution/5_job_Maintenance_MEA.sql

__

info@madeiradata.com I www.madeiradata.com

o Commands that incur too much data writes are the main cause for why the Availability Group

may not be able to replicate the data in time to the secondary server, and to cause the

transaction log file to become bloated (which will also increase the transaction log backup size

and duration).

• Recommendation

o To overcome the network bandwidth limitations, if and wherever possible, try to reduce the

amount of data queried from the source linked server. The best thing would be to have

some kind of indicator of when was the last time the synchronization was performed, and get

only the data modified since that time.

o Even if this indication is not possible for all tables involved, at least do this for as many of

the subset tables as you can, to minimize the overall dataset size.

o To reduce the write impact of the MERGE command, follow the guidelines below:

▪ In the WHEN MATCHED THEN clause, add conditions to verify that indeed at least one

of the columns is different so that only records that were modified would be affected by

the update.

▪ See Appendix P1 for an example code snippet utilizing the EXISTS/EXCEPT method,

as explained here.

▪ Performance-wise, comparing the values of a few tens of columns would still be

preferable to updating the entire table (update operations still happen in the SQL engine

even if all new values are identical to the old ones).

▪ To reduce the blocking overhead of the MERGE command, consider “splitting” it into

several phases:

 Find and mark only the relevant records in the source (temp table) that need to

be updated because at least one of the columns changed. Use the

EXISTS/EXCEPT method, as explained here. This phase can be done using a

NOLOCK hint on the destination table.

 Update the records in the destination table (only those that were marked to be

updated by the previous phase).

 Insert all missing records that don’t exist yet.

 See Appendix P2 for an example Proof-Of-Concept script demonstrating and

measuring the different methodologies.

d. CardHolderDetails Sync Performance Tuning

Business Implications Impact Recommendation Effort Recommendation Risk

Performance High Medium Low

• Description

https://chadbaldwin.net/2020/12/30/only-update-rows-that-changed.html
https://chadbaldwin.net/2020/12/30/only-update-rows-that-changed.html

__

info@madeiradata.com I www.madeiradata.com

Company 123’s main concern when requesting this SQL Server Review was to improve their main

BI/DWH synchronization and calculation processes.

The stored procedure Incremental_CardHolderDetails_Summary is one of them, responsible for

synchronizing the CardHolderDetails table. Indeed based on long-term performance tuning data in

SentryOne, this is by far the heaviest procedure, with the longest total duration, highest CPU, reads,

and writes utilization. See Appendix P0 for more details.

In terms of Duration:

o The longest-running part in this procedure seems to be the one joining between the various

sets of temporary tables (LEFT JOIN).

In terms of Writes:

o The part incurring the most disk IO writes, are the last TRUNCATE and INSERT statements

at the very end of the procedure.

o Commands that incur too much data writes are the main cause for why the Availability Group

may not be able to replicate the data in time to the secondary server, and to cause the

transaction log file to become bloated (which will also increase the transaction log backup size

and duration).

• Recommendation

o If and wherever possible, try to reduce the amount of data queried from the source linked

server. The best thing would be to have some kind of indicator of when was the last time the

synchronization was performed, and get only the data modified since that time.

o Even if this indication is not possible for all tables involved, at least do this for as many of

the subset tables as you can, to minimize the overall dataset size.

o To improve the performance of the main calculation query performing all the LEFT JOINs with

the temporary tables, consider trying to split some or all of the temporary tables to separate

UPDATE commands, filling up data as necessary. This would especially be useful for

temporary tables that hold data for a significant minority of the cardholders, and thus the

performance impact would be only for that minority instead of all the cardholders.

o To reduce the write impact of the TRUNCATE and INSERT commands, follow the guidelines

below:

▪ Unless the vast majority of the table needs to be updated, avoid using the

TRUNCATE/INSERT methodology. Replace it with better-focused UPDATE or MERGE

commands that only update the data that needs to be updated.

▪ Avoid using a staging table in the same database. Use a #temporary table instead, or

a staging table in a local database (not involved in an Availability Group).

▪ Performance-wise, comparing the values of a few tens of columns would still be

preferable to updating the entire table (update operations still happen in the SQL engine

even if all new values are identical to the old ones).

▪ To reduce the blocking overhead of a MERGE command, try “splitting” it into several

phases:

__

info@madeiradata.com I www.madeiradata.com

 Find and mark only the relevant records in the source (temp table) that need to

be updated because at least one of the columns changed. Use the

EXISTS/EXCEPT method, as explained here. This phase can be done using a

NOLOCK hint on the destination table.

 Update the records in the destination table (only those that were marked to be

updated by the previous phase).

 Insert all missing records that don’t exist yet.

 See Appendix P2 for an example Proof-Of-Concept script demonstrating and

measuring the different methodologies.

▪ To reduce the overhead on your destination table even further, consider implementing

the synchronization logic in “chunks”:

 Assign an identity column to the source temporary table.

 Implement a WHILE loop that performs the existence check and/or update for a

subset of the source temporary table, using the identity column values as range

indicators. For example, the first iteration would check for source records with

IDs 1 to 100, the second iteration would check for records with IDs 101 to 200,

etc.

 Reduce the overhead even further by using a WAITFOR DELAY command after

each iteration (for example, to wait for a duration of half a second before

continuing to the next iteration).

 See Appendix P3 for an example Proof-Of-Concept script demonstrating the

methodology.

o The main temporary table should be properly indexed to optimize the relevant queries

(JOINing with the target table during updates, checking WHERE NOT IN/EXISTS during

insertions).

e. ContactHistory Performance

Business Implications Impact Recommendation Effort Recommendation Risk

Performance High Medium Low

• Description

The ContactHistory table is a central table used for a wide variety of use cases by the CRM analytics

team. It is a very large table (~350 million rows, ~500 GB).

Unfortunately, there’s no particular kind of query or operation that can be specifically tuned for this

table. Most operations query vast amounts of data from this table based on one or more

“Campaigns”, which is connected to the ContactHistory table via the BulkDistribution table via the

BulkID column. For example:

https://chadbaldwin.net/2020/12/30/only-update-rows-that-changed.html

__

info@madeiradata.com I www.madeiradata.com

SELECT …

FROM BulkDistribution AS bd

INNER JOIN ContactHistory AS ch ON bd.BulkId = ch.BulkId

WHERE bd.CampaignID IN (123, 456, 789);

• Recommendations

o There are a few things we could try to optimize the performance of this table, although none

of these methods is guaranteed to solve all performance issues on its own.

o Enable Data Compression on the ContactHistory table to reduce its performance impact

on the data disk. Please see section Tables with High Data Compression Savings and

Appendix C for more details.

o Reduce the table’s size and DML overhead by removing unused and redundant indexes.

See sections Unused Indexes and Redundant Indexes for more details.

o Copy the CampaignId column to the ContactHistory table as well. This would make filtering

by CampaignId more efficient by accessing the ContactHistory table directly instead of relying

on the join with the BulkDistribution table.

o Index Optimization is recommended to cover the most frequent use-cases of this table. For

example, having an index on BulkID, SendDate, and INCLUDE on ContactStatus and

CardHolderId. Also, it’s recommended to utilize Filtered Indexes to better support, especially

frequent use-cases. For example:

CREATE NONCLUSTERED INDEX [IX_ContactHistory_BulkID_Incl] ON

[dbo].[ContactHistory] ([BulkID], [SendDate])

INCLUDE ([ContactStatus], [CardholderId])

WHERE [CardholderId] != '12345' AND [ContactStatus] != 0;

NOTE: Your queries would have to logically fit the index filters for the SQL engine to be able

to use it.

o When designing your views and queries, remember to maintain “SARGEability”, by “isolating”

table columns to one side of a predicate’s “equation”. As such, avoid using CASE expressions

that later would be used in WHERE clauses. For example, see Appendix P4 for an execution

plan where the heaviest statement is querying from the VW_Contacts view and filtering on

IsTest = 0, which translates to:

CASE WHEN [dbo].[ContactHistory].[CardholderId] = '12345' THEN 1 ELSE

[dbo].[DistributionBulks].[IsTest] END = 0

The entire CASE expression is on one side of the predicate “equation”, and therefore it’s not

SARGEable. The preferred alternative is to change the CASE expression into a more straight-

forward AND expression like so:

[dbo].[ContactHistory].[CardholderId] != '12345'

AND [dbo].[DistributionBulks].[IsTest] = 0

__

info@madeiradata.com I www.madeiradata.com

You may have to make changes in the definition of your view or even create an entirely new

view(s) to support this change (for example, by creating a view specifically dedicated to non-

test data). Also, matching filtered indexes could help here as well.

o This private issue of CardHolderId = ’12345’, which represents a special case, badly affects

various design choices down the line (such as the creation of computed columns, filtered

indexes, etc.). All of these bad design choices only work to further “cement” the special case

instead of properly resolving it. It’s best to receive the difficult choice and properly resolve this

case. By cleaning up the data, and/or by making proper schema changes.

o Create missing Foreign Keys between the tables SegmentChannels, FlowOrders, and

Segments, Flows, CampaignTracks. Such foreign keys can assist in JOIN Elimination while

querying from the relevant view(s) without returning data specifically from those tables, and

thus improve performance.

o You may want to consider alternative NoSQL platforms that could better fit your unpredictable

use cases for this table, such as Columnar Databases or Document Databases. For

example, Azure Data Explorer (Kusto), Azure CosmosDB, Cassandra, HBase, MongoDB,

Couchbase, and so on. One of these may give you a better solution than SQL Server.

f. Campaign Analysis Performance Tuning

Business Implications Impact Recommendation Effort Recommendation Risk

Performance High Medium Low

• Description

This section encompasses the various analytic jobs and stored procedures executed by the CRM

analytics team, which implement some kind of analytical process on various campaign-related

tables.

The following queries below were taken as a representative sample based on long-term SentryOne

performance data. There are different issues and recommendations per each.

• Recommendations

o Appendix CM1: Campaign Contact History and Responses

▪ The heaviest command in this script appears to be the creation of the

#VW_CampaignStructure temp table based on a query from VW_CampaignStructure,

after which several other temporary tables are created as intermediary phases. What

we should try here is to reduce the overhead generated, by removing unnecessary

“lookup” columns, such as CampaignName, FlowName, SegmentName,

ChannelTypeDesc. These columns are not required for the script’s aggregations and

calculations. They’re only needed in the very last output. As such, their retrieval should

be deferred to as later step as possible in the script. Otherwise, you’re wasting

__

info@madeiradata.com I www.madeiradata.com

valuable memory and disk resources every time you query them, store them in a

temporary table, query them again and store them again in another temporary table.

o Appendix CM2a to CM2e: Process_CampaignsDistribution

▪ A significant portion of the top heaviest queries in the database seems to have been

caused by executions of the stored procedure Process_CampaignsDistribution, in

which the heaviest part is the trigger on ContactsEligibilityStatusReasons, which

was incorrectly updating the UpdateDate column based on CampaignID of the affected

data. This appears to have been a human error due to incorrect copy-pasting from

somewhere else.

▪ You should improve SARGEability when filtering on date-time ranges, such as the

RunDate column. In other words, this:

DATEDIFF (D, RunDate, GETDATE ()) <= 1.5

should be changed into this:

RunDate >= GETDATE () - 1.5

Once the search predicate is filtering on a column instead of an expression, this

should allow the SQL Optimizer to make good use of column statistics, and if/when it’s

indexed, then it would be able to use such an index. In turn, this would make for better

row estimations and better execution plans.

g. Reduce Load on AG via External Staging Tables

Business Implications Impact Recommendation Effort Recommendation Risk

Performance High Medium Low

• Description

The CRM team complained about not being able to add the CRM_DB database into the Availability

Group because otherwise, the AG cannot keep up with the heavy load caused by the massive data

changes performed during analytical processes and synchronizations.

• Recommendation

o In addition to all of the other recommendations in this document, meant for “reducing the DML

footprint” of your analytical and synchronization operations, you should also consider

separating your staging tables and operations to an external database. What this means

is that, instead of saving all of your “intermediary” data in the same CRM_DB database, you

would do so in a separate database (“Staging_DB” for example) which would NOT be

included in an AG. The only data you would have remained in the CRM_DB database would

be just the “final result” data.

https://en.wikipedia.org/wiki/Sargable

__

info@madeiradata.com I www.madeiradata.com

o This would mean, of course, that in the event of a fail-over, the intermediary staging data

would not be accessible to the secondary node, and any ongoing analytical/synchronization

processes would have to be re-calculated from scratch.

o Considering the HA/DR benefit that this is expected to provide, the risk of having to re-

calculate a process from scratch in the rare event of failover should be acceptable here.

h. Backups and DB Files on the Same Physical Disk

Business Implications Impact Recommendation Effort Recommendation Risk

Availability High Medium Low

• Description

2,217 backup files along with 13 database files were found on drive G.

Having both backup files and database files on the same drive exposes the company to permanent

data loss in case of hardware failure (such as a damaged disk).

• Recommendation

o Either change the backup location policy to a different drive or move the database files (the

latter option may require downtime maintenance).

o Alternatively, you could also periodically copy/move the backup files to another server, thus

ensuring data protection and increase recovery options.

o You may use this script to find all backup files and database files located on the same drive:

https://github.com/MadeiraData/MadeiraToolbox/blob/master/Best%20Practices%20Checkli

sts/Backup%20and%20DB%20files%20on%20same%20physical%20volume.sql

i. xp_cmdshell Enabled

Business Implications Impact Recommendation Effort Recommendation Risk

Security High Medium Low

• Description

xp_cmdshell is a SQL Server configuration option allowing execution of cmd commands for external

processing using SQL Server extended stored procedure. As it is useful for scripts and general

programming, this configuration option is disabled by default, due to the security risks it may impose

– malicious users could use it to elevate their privileges, affect system configurations, and even

reach additional servers in the network.

• Recommendation

o Find all procedures and processes which require the xp_cmdshell configuration option

enabled.

https://github.com/MadeiraData/MadeiraToolbox/blob/master/Best%20Practices%20Checklists/Backup%20and%20DB%20files%20on%20same%20physical%20volume.sql
https://github.com/MadeiraData/MadeiraToolbox/blob/master/Best%20Practices%20Checklists/Backup%20and%20DB%20files%20on%20same%20physical%20volume.sql

__

info@madeiradata.com I www.madeiradata.com

o Evaluate whether a permanent activation of this option is necessary. Consider modifying the

above procedures and processes found to enable xp_cmdshell only for the duration of the

actual task – or better yet, look into other alternatives to achieve the same tasks more

securely, such as CLR or SSIS.

j. SQL Memory Dump Files Found

Business Implications Impact Recommendation Effort Recommendation Risk

Availability High High Medium

• Description

Two SQL memory dump files were created on 17/05/2020.

When a severe error occurs, SQL Server would sometimes automatically create a memory dump file

(.mdmp) which contains a snapshot of the SQL Server memory state (containing thread call-stacks,

CPU register states, and modules loaded).

The 2 dump files created on 17/05/2020 happened with the current SQL version installed

(14.0.3223.3).

See Appendix E for a summary of these memory dump events.

Also, an additional memory dump file was created on the Secondary server on 07/09/2020.

• Recommendation

o Your current SQL Server version (14.0.3223.3) is very far behind (August 2019). It may very

well be possible that the issue causing these crashes was already resolved in a later

cumulative update.

o Without being on the latest SQL update, you will not be able to use Microsoft Support for

assistance with these crashes.

o Please update your SQL Server version to the latest cumulative update as soon as you can.

More details here: https://sqlserverbuilds.blogspot.com/#sql2017x.

k. Secondary Server is not Monitored

Business Implications Impact Recommendation Effort Recommendation Risk

Availability

Performance

Security

Medium Low Low

• Description

While the primary server is being monitored using the SQL Sentry platform, the secondary server

isn’t. It is important to monitor the secondary server as well, as it can also cause availability,

performance, and security issues.

https://sqlserverbuilds.blogspot.com/#sql2017x

__

info@madeiradata.com I www.madeiradata.com

Also, if there is a failover, and the secondary server becomes the primary replica, then the (new)

primary server will not be monitored. Furthermore, a non-monitored server may have unnoticed faults

which may only be revealed when it’s already too late and it has become primary and might influence

the server’s availability during critical events.

• Recommendation

We recommend purchasing a SentryOne monitor license for the secondary server as well and

monitor both servers at all times. In addition to data collection, the platform also has very rich alerting

capabilities, and we recommend leveraging them and implement useful alerts.

We recommend purchasing one of our DBSmart plans, which also includes discounted licenses of

SQL Sentry as well as the implementation of alerts and ongoing maintenance and support.

It’s also important to note that SentryOne and DBSmart monitoring costs for secondary DR

(passive) servers are at a half-price discount.

l. Unused Indexes

Business Implications Impact Recommendation Effort Recommendation Risk

Performance

Cost Savings
Medium Low Low

• Description

On the primary server, a few unused indexes were found.

Those indexes were probably created for past usage, but now either the data has changed or other

more efficient indexes are being used instead.

Although not used, in addition to unnecessary storage occupancy, they are being updated in each

maintenance and DML operation, making it longer than needed.

• Recommendation

o Check if additional information is available for the following indexes:

DB Name Schema Table Name Index Name

CRM_DB dbo ContactHistory ix_campaignname_campaigndate

Test ReplicaData PartnerList IX_PartnerID_Incl

CRM_DB dbo DistributionBulks IX_DistributionBulks_CampaignName

DBA_Local dbo JobOwnershipLog IX_JobOwnershipLog_EventDate

o If possible, create a dropping plan for the relevant indexes, preferably using long time

intervals between them to allow beneficial rollback in case of need.

https://www.madeiradata.com/dbsmart

__

info@madeiradata.com I www.madeiradata.com

m. Outdated Statistics

Business Implications Impact Recommendation Effort Recommendation Risk

Performance Medium Low Low

• Description

There are many outdated statistics in the CRM_DB database, which were either never updated, or

updated as far back as 3 years ago or more.

Despite the stale state of their statistics, these tables are still operational and have high row

modification counter values, which indicate the number of rows changed since the last statistics

update.

Outdated statistics may have a severe impact on the performance of queries.

• Recommendation

o Download and install the latest Ola Hallengren maintenance solution scripts.

o Set up and schedule jobs to periodically update the statistics in the database(s).

o It’s recommended to have a statistics update as an additional step right after regular index

optimization (rebuild/defrag) in the same job.

o Example command to execute IndexOptimize to update all modified statistics (without

rebuilding/defragmenting indexes):

EXECUTE dbo.IndexOptimize

@Databases = 'USER_DATABASES',

@FragmentationLow = NULL,

@FragmentationMedium = NULL,

@FragmentationHigh = NULL,

@UpdateStatistics = 'ALL',

@OnlyModifiedStatistics = 'Y',

@MaxDOP = 1,

@LogToTable = 'Y';

o Please see Appendix F for more details about which statistics were found to be outdated

during the review.

n. Remote DAC should be Enabled

Business Implications Impact Recommendation Effort Recommendation Risk

Availability Medium Low Low

• Description

https://ola.hallengren.com/

__

info@madeiradata.com I www.madeiradata.com

SQL Server provides a special diagnostic connection (dedicated administrator connection) for

administrators when standard connections to the server are not possible. This diagnostic connection

allows an administrator to access SQL Server to execute diagnostic queries and troubleshoot

problems even when SQL Server is not responding to standard connection requests.

The configuration in question ("remote admin connections") determines whether the SQL Server

would allow such connections to be made from outside the instance. If it's turned off, then DAC

connections can only be made to "localhost".

• Recommendation

o Rule of thumb: in clustered environments, the setting should be enabled. Otherwise, it should

remain disabled.

o However, in most cases, the customer would prioritize their server availability rather than its

security. Therefore, in the vast majority of cases, this setting should always be enabled.

o The setting can be enabled by running the following script:

sp_configure 'remote admin connections', 1;

GO

RECONFIGURE;

GO

o. Maintenance History Cleanup Jobs not Scheduled

Business Implications Impact Recommendation Effort Recommendation Risk

Performance

Availability
Medium Low Low

• Description

We can see that the Ola Hallengren maintenance solution is already installed on your servers.

However, some of the related history cleanup jobs are not scheduled.

This oversight may cause some “bloating” of the job history data in MSDB as well as maintenance

output files in your SQL Server’s LOG directory.

That, in turn, can make it difficult to troubleshoot job execution history (because it would take a long

time to open the relevant tables and/or directories), not to mention the unnecessarily wasted disk

space.

• Recommendation

o Add a schedule to the relevant jobs that are missing a schedule:

▪ On the Primary server:

 Output File Cleanup

 sp_delete_backuphistory

▪ On the Secondary server:

__

info@madeiradata.com I www.madeiradata.com

 sp_delete_backuphistory

 sp_purge_jobhistory

p. Intermittent Availability Group Disconnections

Business Implications Impact Recommendation Effort Recommendation Risk

Performance Medium Medium Low

• Description

Based on the SQL Server Error Log, and the AlwaysOn_Health extended events session, there are

intermittent disconnection events between the Availability Group replicas.

Example error message in the logs:

A connection timeout has occurred on a previously established connection to

availability replica 'CRM01-PRD' with id [FC395142-21E0-402E-91B7-

D6D002D9872F]. Either a networking or a firewall issue exists or the

availability replica has transitioned to the resolving role.

These errors could also be a cause for intermittent job failures.

The errors seem to indicate some kind of latency issue between the replicas which may have

something to do with the network. But the exact root cause is currently unclear.

• Recommendation

o Do whatever can be done to reduce the bandwidth demands between the servers, by

minimizing the amount and/or rate of data modifications on the primary server.

o Troubleshoot possible network latency issues. Please check the network bandwidth between

the two data centers, and see if anything can be done to increase it.

o If the latency issues cannot be resolved, consider making timeout threshold settings more

lenient (the current Session Timeout setting for the WSFC is 10 seconds. You could increase

it to something like 40 seconds, for example).

q. Foreign Keys without Matching Indexes

Business Implications Impact Recommendation Effort Recommendation Risk

Performance Medium Medium Low

• Description

Multiple tables were found to have un-indexed foreign key columns.

These tables may have a significant performance impact when the data in the “parent” table of the

foreign key is deleted or joined with its “child” records in a query.

• Recommendation

__

info@madeiradata.com I www.madeiradata.com

o Consider creating indexes for these tables, as detailed in the attached Excel file (see

Appendix B).

o Note that some of these foreign keys may not necessarily require an index if we’re to assume

that the parent table always remains unchanged. Please review each recommendation

accordingly before applying any remediation script.

r. Tables with High Unused Space Percentage

Business Implications Impact Recommendation Effort Recommendation Risk

Performance

Cost Savings
Medium Medium Low

• Description

There are a few tables, specifically in the CRM_DB and Optimus databases, that have high unused

space percentages. This can happen when a table has a high deletion/update rate, and/or when

these tables are heaps (without a clustered index), and/or when the FILLFACTOR setting is too low.

• Recommendation

o Consider creating a clustered index for the tables which are heaps.

o Review the FILLFACTOR setting on these tables/indexes and if it’s not 100, consider changing

it.

o Consider rebuilding the indexes of the tables to reclaim the unused space.

o Review the usage methodology of these tables, and see if it can be improved. For example:

Replace DELETE+INSERT logic with a simpler and better-focused UPDATE/MERGE logic.

o Consider implementing Table Partitioning for the tables that are periodically deleted based on

time.

s. Tables with High Data Compression Savings

Business Implications Impact Recommendation Effort Recommendation Risk

Performance

Cost Savings
Medium Medium Low

• Description:

Several tables in the CRM_DB database may significantly benefit from Data Compression.

We’ve performed a data compression savings estimation check and found that as much as 144 GB

could potentially be saved in disk space utilization if we are to apply compression in the right places.

See Appendix C for more details.

It should also be noted that these recommendations are based on the current usage statistics in

your database. If you’re able to improve your database operations by minimizing the rate at which

__

info@madeiradata.com I www.madeiradata.com

data is updated or deleted, then even more opportunities for data compression could potentially be

found.

In general, data compression in SQL Server can improve not only disk space utilization but also disk

IO performance and memory buffer utilization. This is because data compression is retained for the

pages in the memory buffer as well, and the more you can fit in a data page – the fewer operations

would be needed for retrieving the same amount of data (both for disk IO and memory buffer).

The “price” to pay for data compression comes in the form of somewhat increased CPU utilization

since SQL Server has to automatically compress and decompress each data page that it accesses.

The rate of this CPU utilization increase depends mostly on the update rate of compressed data,

which is why it’s important to carefully analyze the compression feasibility of each table based on its

usage stats (which is exactly what was done as part of this check).

More details here.

• Recommendation:

o Rebuild the relevant indexes with data compression, as detailed in Appendix D.

o If the tables in question are too big, and/or your maintenance windows are too short, you may

run the remediation script in stages, limiting its execution to specific days or times of day, until

all relevant indexes are compressed as needed.

o Note that this check was only performed on the CRM_DB database. If you wish to perform

the same check for other databases as well, you may use the following T-SQL script:

https://github.com/MadeiraData/MadeiraToolbox/blob/master/Utility%20Scripts/ultimate_com

pression_savings_estimation_whole_database.sql.

t. Large Heaps (Tables without Clustered Indexes)

Business Implications Impact Recommendation Effort Recommendation Risk

Performance Medium Medium Medium

• Description

There is a large number of large “Heap” tables across multiple databases.

Heap tables are generally bad for performance and maintenance.

For more info please refer to the following:

https://eitanblumin.com/2019/12/30/resolving-tables-without-clustered-indexes-heaps/.

• Recommendation

o Consider creating clustered indexes for the heap tables, as detailed in the attached Excel file

(see Appendix A).

o The recommendations in the appendix are best-guess only, based on each table’s structure

and usage statistics. Please review and verify each recommendation before applying.

o Both remediation and rollback scripts are provided in the appendix, for your convenience.

https://www.madeiradata.com/post/how-to-effectively-compress-your-data-in-sql-server
https://github.com/MadeiraData/MadeiraToolbox/blob/master/Utility%20Scripts/ultimate_compression_savings_estimation_whole_database.sql
https://github.com/MadeiraData/MadeiraToolbox/blob/master/Utility%20Scripts/ultimate_compression_savings_estimation_whole_database.sql
https://eitanblumin.com/2019/12/30/resolving-tables-without-clustered-indexes-heaps/

__

info@madeiradata.com I www.madeiradata.com

o Most of the heap tables in CRM_Workspace could be dropped altogether (which I’m guessing

due to the word “Test”, “Temp”, “Testing”, or a person’s name in the table names).

u. DB Files Located on OS Drive

Business Implications Impact Recommendation Effort Recommendation Risk

Availability Medium Medium Medium

• Description

The system database MSDB is located on drive C which also contains the operating system.

Placing database files on the system volume puts the operating system in danger in case of DB

overgrowth – which may result in server shutdown and difficulties to recover.

• Recommendation

Consider moving MSDB to a different disk volume (will involve downtime maintenance).

Click here for more details.

v. Redundant Indexes

Business Implications Impact Recommendation Effort Recommendation Risk

Performance

Cost Savings
Medium Low Low

• Description

In the CRM_DB database, a few redundant indexes were found.

These are either duplicate indexes or indexes with key columns contained within the key columns of

other indexes.

Every seek operation on these redundant indexes can also be handled by one or more other indexes,

which is what makes them redundant. In addition to unnecessary storage occupancy, they are being

updated in each maintenance performed, making it a bit longer than needed.

• Recommendation

o Check if further information is available for the following indexes:

Schema Table Name Redundant Index Containing Index

dbo NotAllowedContact ID CardHolderId

dbo CampaignTestLog CycleID LanguageID

dbo ContactHistory ix_CardholderID IX_ContactHistory_CardholderId

https://www.sqlwatchmen.com/sql-server/safely-moving-msdb-sql-server/

__

info@madeiradata.com I www.madeiradata.com

o If possible, create a dropping plan for the relevant indexes, preferably using long time

intervals between them to allow beneficial rollback in case of need.

w. Orphaned Database Users

Business Implications Impact Recommendation Effort Recommendation Risk

Security

Availability
Low Low Low

• Description

“Orphaned Database Users” happen when a Database User is no longer associated with its relevant

Server Login. Users are mapped to their Logins by their SID, not by their names. And every time you

create a new SQL Login, it receives a new, random SID.

Orphaned users often happen when the Server Login is deleted (even if it’s recreated later), or when

the database is moved or restored to a different SQL Server. You can find some more info on it

in this article from Microsoft.

• Recommendation

o Use the T-SQL script provided in this link to automatically detect all orphaned database users

in the server, and generate remediation commands for them, based on the following use

cases:

▪ If a SQL login already exists with the same name, modify the database user to be linked

to that login.

▪ Otherwise, drop the database user.

▪ If the orphaned user is the owner of database schemas and needs to be dropped, then

a script is also generated to first transfer the ownership of its schemas to [dbo].

o The best solution for this problem is to have consistent SIDs to your Logins across all your

SQL Servers. So that even when a database is moved/replicated to a different server, it could

still use the same SID that it was created for. And also, when you recreate a previously deleted

Login, you’d need to create it with the same SID that it originally had.

o You may use the “sp_help_revlogin” stored procedure published by Microsoft to generate

CREATE LOGIN scripts that maintain the original login SIDs. One drawback of this procedure,

though, is that it only provides the creation script for the Login itself, but not for its permissions,

roles, etc.

o If you ever need to migrate Logins from one SQL Server to another, including their roles and

permissions and such, I recommend the easy-to-use Powershell library “dbatools” which

contains the cmdlet Copy-DbaLogin. More info here.

https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/troubleshoot-orphaned-users-sql-server
https://eitanblumin.com/2018/10/31/t-sql-script-to-fix-orphaned-db-users-easily/
https://support.microsoft.com/en-us/help/918992/how-to-transfer-logins-and-passwords-between-instances-of-sql-server
https://dbatools.io/
https://dbatools.io/functions/copy-dbalogin/

__

info@madeiradata.com I www.madeiradata.com

x. Job Failover Solution for HA/DR

Business Implications Impact Recommendation Effort Recommendation Risk

Availability Low Low Low

• Description

Currently, job failover for the Availability Group is implemented using a preliminary step in each job

that checks whether the local instance is the primary. If it’s not, then an error is raised and the job

completes with success. This is an inefficient methodology and is difficult to maintain.

It fills up the MSDB database with useless job history “junk” and makes it difficult to troubleshoot

actual execution failures of these jobs.

• Recommendation

o We recommend using the “Master Control Job” methodology instead, where a single job

controls the enabled/disabled status of all HADR-dependent jobs based on HADR role change

events.

o The following open-source solution was developed by Madeira Data Solutions and is publicly

available for free. It is very robust and easy to set up: https://git.madeiradata.com/mssql-jobs-

hadr/.

y. Tables To Be Deleted

Business Implications Impact Recommendation Effort Recommendation Risk

Performance

Cost Savings
Low Low Medium

• Description

The “OldObjects” database contains many tables with “_ToBeDeleted_” in their names, specifying

a date, which is, I assume, the date at which they can be deleted. All of these dates are far in the

past, and yet these tables still exist. Some of them are very large and unnecessarily take up disk

space.

• Recommendation

o Drop these tables and free up space.

7. Appendix

The following additional files are provided alongside this document:

• Appendix_A_HeapTables.xlsx

• Appendix_B_ForeignKeysUnIndexed.xlsx

• Appendix_C_DataCompressionSavingsDetail.xlsx

https://git.madeiradata.com/mssql-jobs-hadr/
https://git.madeiradata.com/mssql-jobs-hadr/

__

info@madeiradata.com I www.madeiradata.com

• Appendix_CM1_CampaignContactHistoryAndResponses.pesession

• Appendix_CM2a_CM_Process_CampaignsDistribution_2.pesession

• Appendix_CM2b_CM_Process_CampaignsDistribution_3.pesession

• Appendix_CM2c_CM_Process_CampaignsDistribution_3_actual.pesession

• Appendix_CM2d_CM_Process_CampaignsDistribution_4.pesession

• Appendix_CM2e_CM_Process_CampaignDistribution.pesession

• Appendix_D_DataCompressionApply.sql

• Appendix_E_SQLDump_Summary.txt

• Appendix_F_Outdated_Statistics.xlsx

• Appendix_P0_TopSQL_Summary.xlsx

• Appendix_P1_WHEN_MATCHED_AND.sql

• Appendix_P2_MERGE_Variants_POC.sql

• Appendix_P3_UpdateInChunks_POC.sql

• Appendix_P4_contact_history_ExecPlan.sqlplan

